Fate of the soma and dendrites of cord-projection central neurons after proximal and distal spinal axotomy: an intracellular dye injection study.

نویسندگان

  • Yueh-Jan Wang
  • Jeng-Rung Chen
  • Guo-Fang Tseng
چکیده

We used rat rubrospinal neurons as a model to study the soma-dendritic morphology of cord-projection neurons following spinal axonal injury. We examined lumbar-projection neurons following both upper cervical and lower thoracic axotomy to find out whether changes were dependent on the proximity of the lesion to the cell body. Axotomized neurons were marked with retrograde tracer and studied 4 and 8 weeks later with intracellular dye injection technique. Axotomy resulted in prominent shrinkage of their soma and relatively minor reduction of their dendritic spreads. The degree of soma shrinkage depended on both the duration of survival and the proximity of lesion. In addition, dendritic modification peaked 4 weeks following proximal lesion, which was also achieved 8 weeks following distal axotomy. Tractotomy at upper cervical and lower thoracic levels also allowed us to compare the effect of distal axotomy on cervical and lumbar-projection neurons. Results show that although cervical-projection neurons responded more quickly than lumbar-projecting ones, they however showed a similar degree of alteration in both their soma and dendrites 8 weeks following distal axotomy. In summary, cord-projection neurons survived 8 weeks following either upper cervical or lower thoracic axotomy with relatively intact dendritic features. Taken together, our data thus far suggest that cord-projection central neurons continue to integrate inputs and control supraspinal targets following spinal axotomy. The minor dendritic shrinkage within two months of spinal axotomy rejuvenates hopes for functional recovery if regeneration of their spinal axons can be achieved at least within this time frame.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deprenyl increases synaptophysin and choline acetyltransferase in rat after sciatic nerve axotomy

Neuroprotective effect of deprenyl on motoneurons of spinal cord after axotomy of peripheral nerves such as sciatic has been well established. Deprenyl is an inhibitor of monoamine oxidase type-B (MAO-B). The main function of this agent is the release of neurotransmitters from pre-synaptic terminals. Acetylcholine is a neurotransmitter that is synthesized by choline acetyltransferase (ChAT) and...

متن کامل

Deprenyl increases synaptophysin and choline acetyltransferase in rat after sciatic nerve axotomy

Neuroprotective effect of deprenyl on motoneurons of spinal cord after axotomy of peripheral nerves such as sciatic has been well established. Deprenyl is an inhibitor of monoamine oxidase type-B (MAO-B). The main function of this agent is the release of neurotransmitters from pre-synaptic terminals. Acetylcholine is a neurotransmitter that is synthesized by choline acetyltransferase (ChAT) and...

متن کامل

Heterogeneous spine loss in layer 5 cortical neurons after spinal cord injury.

A large thoracic spinal cord injury disconnects the hindlimb (HL) sensory-motor cortex from its target, the lumbar spinal cord. The fate of the synaptic structures of the axotomized cortical neurons is not well studied. We evaluated the density of spines on axotomized corticospinal neurons at 3, 7, and 21 days after the injury in adult mice expressing yellow fluorescence protein in a subset of ...

متن کامل

Deprenyl changes the expression of Trk-B and P75 NTR receptors in rat after sciatic nerve axotomy

During development many of neurons die by the phenomenon named programmed cell death or apoptosis and this reaction is regulated by neurotrophin (BDNF, NGF, NT3 and NT4/5). These neurotrophins bind to two different classes of transmembrane receptor proteins, the Trks and P75 NTR. Axotomy can induce apoptosis after birth and deprenyl is a an inhibitor of monoamineoxidase type-B and seems to act ...

متن کامل

Deprenyl changes the expression of Trk-B and P75 NTR receptors in rat after sciatic nerve axotomy

During development many of neurons die by the phenomenon named programmed cell death or apoptosis and this reaction is regulated by neurotrophin (BDNF, NGF, NT3 and NT4/5). These neurotrophins bind to two different classes of transmembrane receptor proteins, the Trks and P75 NTR. Axotomy can induce apoptosis after birth and deprenyl is a an inhibitor of monoamineoxidase type-B and seems to act ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurotrauma

دوره 19 11  شماره 

صفحات  -

تاریخ انتشار 2002